Resting and osmotically induced basolateral K conductances in turtle colon
نویسندگان
چکیده
Two types of K conductance can be distinguished in the basolateral membranes of polyene-treated colonic epithelial cells (see Germann, W. J., M. E. Lowy, S. A. Ernst, and D. C. Dawson, 1986, Journal of General Physiology, 88:237-251). The significance of these two types of K conductance was investigated by measuring the properties of the basolateral membrane under conditions that we presumed would lead to marked swelling of the epithelial cells. We compared the basolateral conductance under these conditions of osmotic stress with those observed under other conditions where changes in cell volume would be expected to be less dramatic. In the presence of a permeant salt (KCl) or nonelectrolyte (urea), amphotericin-treated colonic cell layers exhibited a quinidine-sensitive conductance. Light microscopy revealed that these conditions were also associated with pronounced swelling of the epithelial cells. Incubation of tissues in solutions containing the organic anion benzene sulfonate led to the activation of the quinidine-sensitive gK and was also associated with dramatic cell swelling. In contrast, tissues incubated with an impermeant salt (K-gluconate) or nonelectrolyte (sucrose) did not exhibit a quinidine-sensitive basolateral conductance in the presence of the polyene. Although such conditions were also associated with changes in cell volume, they did not lead to the extreme cell swelling detected under conditions that activated the quinidine-sensitive gK. The quinidine-sensitive basolateral conductance that was activated under conditions of osmotic stress was also highly selective for K over Rb, in contrast to the behavior of normal Na transport by the tissue, which was supported equally well by K or Rb and was relatively insensitive to quinidine. The results are consistent with the notion that the basolateral K conductance measured in the amphotericin-treated epithelium bathed by mucosal K-gluconate solutions or in the presence of sucrose was due to the same channels that are responsible for the basolateral K conductance under conditions of normal transport. Conditions of extreme osmotic stress, however, which led to pronounced swelling of the epithelial cells, were associated with the activation of a new conductance, which was highly selective for K over Rb and was blocked by quinidine or lidocaine.
منابع مشابه
Differentiation of two distinct K conductances in the basolateral membrane of turtle colon
The K conductance of the basolateral membrane of turtle colon was measured in amphotericin-treated cell layers under a variety of ionic conditions. Changing the composition of the bathing solutions changed not only the magnitude but also the physical properties of the basolateral K conductance. The results are consistent with the notion that altered ionic environments can lead to changes in the...
متن کاملDigitonin-permeabilized colonic cell layers. Demonstration of calcium- activated basolateral K+ and Cl- conductances
Sheets of isolated turtle colon were exposed to digitonin on the mucosal side to chemically remove the apical membrane as a permeability barrier. Increases in the mucosal uptake of 86Rb, [3H]mannitol, and 45Ca-EGTA, and the appearance of the cytosolic marker enzyme lactate dehydrogenase in the mucosal bath confirmed the permeabilizing effect of the detergent. Basolateral K+ and Cl- currents wer...
متن کاملIntracellular pH regulates basolateral K+ and Cl- conductances in colonic epithelial cells by modulating Ca2+ activation
The role of intracellular pH as a modulator of basolateral K+ and Cl- conductances in epithelial cells was studied using digitonin-permeabilized colonic cell layers so that cytosolic pH could be clamped at specific values, while basolateral K+ and Cl- conductances were activated by stepwise increases in intracellular free Ca2+. Increasing the intracellular pH from 6.6 to 8.0 enhanced the sensit...
متن کاملCation Activation of the Basolateral Sodium-Potassium Pump in Turtle Colon
The current generated by electrogenic sodium-potassium exchange at the basolateral membrane of the turtle colon can be measured directly in tissues that have been treated with serosal barium (to block the basolateral potassium conductance) and mucosal amphotericin B (to reduce the cation selectivity of the apical membrane). We studied the activation of this pump current by mucosal sodium and se...
متن کاملTetraethylammonium-sensitive apical K+ channels mediating K+ secretion by turtle colon.
1. Apical membrane K+ channels in turtle colon were identified and characterized using current fluctuation analysis. 2. Under short-circuit conditions in NaCl-Ringer solution, the power density spectrum (PDS) of the short-circuit current (Isc) sometimes exhibited a clearly discernible Lorentzian component, indicating spontaneous fluctuations produced by a population of apical ion channels. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 88 شماره
صفحات -
تاریخ انتشار 1986